Vaccination and virulence evolution

Joint Graduate Student Seminar

Ph.D. Candidate: Junwei YANG Supervisor: Prof. Guoping ZHAO Department of Microbiology The Chinese University of Hong Kong

Outline

- **1. Vaccination**
- 2. Trade-off evolution model
- **3. Evolution examples**
 - myxomatosis
 - malaria
- 4. Conclusion

Vaccination

• In 1796, Charles Jenner: Cowpox

• 1800's compulsory childhood vaccination

 20th and 21st century: the most productive for vaccine development

Vaccination reduces the cases of infectious diseases

Perfect and imperfect vaccines

Jenner 1796

Semi-immunity influences different steps of parasite life cycle

Gandon et al. 2001; Mackinnon et al. 2009

Trade-off model

Trade-off evolution model

$$\mathbf{R}_0 = \frac{\mathbf{bN}}{\mathbf{v} + \mathbf{d} + \mathbf{r}}$$

R₀, basic reproduction no.
b, transmission rate
N, susceptible host no.
v, mortality caused by parasite
d, mortality caused by other factors
r, cleared rate

May & Anderson 1983

Factors influence virulence evolution

Mackinnon et al. 2009

Predicted direction of virulence evolution

André et al. 2003

Myxomatosis as classical experimental evolution

- 1759: European wild rabbit introduced into Australia
- **1919**: first suggestion to use Myxoma virus to control rabbits in Australia
- 1950: rabbits denuded the landscape
- **1950**: myxomatosis successfully released among Australian rabbits

Virulence evolution for 50 years

Fenner & Fantini 1999

Possible reason for myxomatosis evolution

Naïve rabbit

Resistant rabbit

Best & Kerr 2000

Malaria

One major public health problem in warm climates

Transmitted through mosquito

Different types of vaccine for malaria

Vaccination selects for higher virulence

Wirulence to resistant mouse of parasite from immunized host
 Virulence to resistant mouse of parasite from normal host
 Virulence to naïve mouse of parasite from immunized host
 Virulence to naïve mouse of parasite from normal host

Mackinnon & Read 2004

Increased virulence may be due to a higher multiplication rate

Mackinnon & Read 2004

Different evolution directions $(r_1 \text{ and } r_3 \text{ vs. } r_2 \text{ and } r_4)$

Gandon et al. 2001; Mackinnon et al. 2009

Different evolution directions (rl and r3 vs. r2 and r4)

Gandon et al. 2001; Mackinnon et al. 2009

Conclusion

- Parasite eradication becomes less feasible using imperfect vaccines
- Vaccination promotes evolution of higher virulence
- Some types of vaccines (i.e., r_1 , r_3) may limit virulence evolution

or Develop perfect vaccine Dominate the parasites

Thank you